Publications


* indicates equal contribution


ICCV 2021

Yi Zeng*, Won Park*, Z. Morley Mao, Ruoxi Jia

Backdoor attacks have been considered a severe security threat to deep learning. Such attacks can make models perform abnormally on inputs with predefined triggers and still retain state-of-the-art performance on clean data. While backdoor attacks have been thoroughly investigated in the image domain from both attackers' and defenders' sides, an analysis in the frequency domain has been missing thus far. This paper first revisits existing backdoor triggers from a frequency perspective and performs a comprehensive analysis. Our results show that many current backdoor attacks exhibit severe high-frequency artifacts, which persist across different datasets and resolutions. We further demonstrate these high-frequency artifacts enable a simple way to detect existing backdoor triggers at a detection rate of 98.50% without prior knowledge of the attack details and the target model. Acknowledging previous attacks' weaknesses, we propose a practical way to create smooth backdoor triggers without high-frequency artifacts and study their detectability. We show that existing defense works can benefit by incorporating these smooth triggers into their design consideration. Moreover, we show that the detector tuned over stronger smooth triggers can generalize well to unseen weak smooth triggers. In short, our work emphasizes the importance of considering frequency analysis when designing both backdoor attacks and defenses in deep learning.


ICIP 2021

Won Park, Nan Liu, Qi Alfred Chen, Z. Morley Mao

A critical aspect of autonomous vehicles (AVs) is the object detection stage, which is increasingly being performed with sensor fusion models: multimodal 3D object detection models which utilize both 2D RGB image data and 3D data from a LIDAR sensor as inputs. In this work, we perform the first study to analyze the robustness of a high-performance, open source sensor fusion model architecture towards adversarial attacks and challenge the popular belief that the use of additional sensors automatically mitigate the risk of adversarial attacks. We find that despite the use of a LIDAR sensor, the model is vulnerable to our purposefully crafted image-based adversarial attacks including disappearance, universal patch, and spoofing. After identifying the underlying reason, we explore some potential defenses and provide some recommendations for improved sensor fusion models.


ACNS 2020

Michael McCoyd, Won Park, Steven Chen, Neil Shah, Ryan Roggenkemper, Minjune Hwang, Jason Xinyu Liu, David Wagner

Deep learning image classification is vulnerable to adversarial attack, even if the attacker changes just a small patch of the image. We propose a defense against patch attacks based on partially occluding the image around each candidate patch location, so that a few occlusions each completely hide the patch. We demonstrate on CIFAR-10, Fashion MNIST, and MNIST that our defense provides certified security against patch attacks of a certain size.


CSS 2019

Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Rampazzi, Qi Alfred Chen, Kevin Fu, Z. Morley Mao

In Autonomous Vehicles (AVs), one fundamental pillar is perception, which leverages sensors like cameras and LiDARs (Light Detection and Ranging) to understand the driving environment. Due to its direct impact on road safety, multiple prior efforts have been made to study its the security of perception systems. In contrast to prior work that concentrates on camera-based perception, in this work we perform the first security study of LiDAR-based perception in AV settings, which is highly important but unexplored. We consider LiDAR spoofing attacks as the threat model and set the attack goal as spoofing obstacles close to the front of a victim AV. We find that blindly applying LiDAR spoofing is insufficient to achieve this goal due to the machine learning-based object detection process. Thus, we then explore the possibility of strategically controlling the spoofed attack to fool the machine learning model. We formulate this task as an optimization problem and design modeling methods for the input perturbation function and the objective function. We also identify the inherent limitations of directly solving the problem using optimization and design an algorithm that combines optimization and global sampling, which improves the attack success rates to around 75%. As a case study to understand the attack impact at the AV driving decision level, we construct and evaluate two attack scenarios that may damage road safety and mobility. We also discuss defense directions at the AV system, sensor, and machine learning model levels.


STWiMob 2018

Steven Chen*, Won Park*, Joanna Yang*, David Wagner

Smartphone sensors are becoming more universal and more accurate. In this paper, we aim to distinguish between four common positions or states a phone can be in: in the hand, pocket, backpack, or on a table. Using a uniquely designed neural network and data from the accelerometer and the screen state, we achieve a 92% accuracy on the same phone. We also explore extending this to different phones and propose an acceleration calibration technique to do so.